Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer- Magic Head Trick!

Regrouping to make 10.

Column methodregrouping

Make both numbers on a place value grid.

146
$+527$

Add up the units and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals, money and decimal place value counters can be used to support learning.

Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.

Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

$$
\begin{aligned}
& 20+5 \\
& 40+8 \\
& \hline 60+13=73
\end{aligned}
$$

As the children move on, introduce	$\frac{+85}{621}$

decimals with
the same number of decimal places and different. Money can be used here.

72.8

$+54.6$
127.4

11

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$6-2=4$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 |
| :--- |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

\hline
\end{tabular}

Find the difference | Compare amounts and objects to find the |
| :--- |
| difference. |

Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. $$

Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8 \\
\(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\square

\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition

Show the link with arrays to first introduce the grid method.

4 rows of 10 4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

$\frac{\text { Cataluations }}{4 \times 126}$

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have
your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$$
210+35=245
$$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	
30	24

X	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Column multiplication

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.

Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

$4+4+8+8+16$
$5 \times 8=40$ juqs

Start with long
multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer.

32
324
$\times \quad$
(4×2)
$120 \quad(4 \times 30)$
$40(20 \times 2)$
$\frac{600}{768} \quad(20 \times 30)$

This moves to the more
compact method.
231
1342
x 18
13420
10736
24156

Division

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Sharing objects into groups \& I have 10 cubes, can you share them equally in 2 groups? \& Children use pictures or shapes to share quantities.
$$
8 \div 2=4
$$ \& Share 9 buns between three people.
$$
9 \div 3=3
$$

\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.

$96 \div 3=32$

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$
\begin{aligned}
& 20 \div 5=? \\
& 5 \times ?=20
\end{aligned}
$$

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Cotholic Primary School
Division within arrays

